Indian Statistical Institute, Bangalore B. Math. First Year First Semester - Analysis I

Semestral Exam

Date : Nov 05, 2014

[5]

[3]

This paper carries 44 marks. Maximum marks you can get is 34

- 1. Let $x_1 \ge x_2 \ge \dots \ge 0$. Show that $\sum_{j=1}^{\infty} x_j$ is finite if and only if $\sum_{j=0}^{\infty} y_j < \infty$ where $y_k = 2^k x_{2^k}$ for k = 0, 1, 2, 3.... [4]
- 2. Let $f : [a, b] \to \mathbb{R}$ be continuous and twice differentiable. Show that there exists c in (a, b) such that $f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(c)$ [5]
- 3. Let $y_1, y_2, y_3...$ be any Cauchy sequence of reals. Without using the completeness of \mathbb{R} , show that the sequence $y_1, y_2...$ is a bounded sequence. [2]
- 4. Show that the complex numbers \mathbb{C} is complete. [You can use \mathbb{R} is complete] [3]
- 5. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence defined by $x_1 = \frac{1}{2}$ and, for any $n \ge 1$,

$$x_{n+1} = \frac{x_n^2}{x_n^2 - x_n + 1}$$

prove that $\sum_{n=1}^{\infty} x_n$ is convergent.

- 6. (a) Let u_n be a sequence of complex numbers with $\sum |u_n| < \infty$. Show that $\sum_{1}^{\infty} u_n^2$ exists. [3]
 - (b) Give an example $a_1, a_2, ...$ a sequence of real numbers such that $\sum_{n=1}^{\infty} a_n$ exists but $\sum a_n^2 = \infty$ and prove your claim. [2]
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$f(x+y) = f(x) + f(y)$$

for all x, y in \mathbb{R} . If f is continuous at x_0 , show that f is continuous on the whole of \mathbb{R} .

- 8. (a) Let $f : [0,1] \to [0,1]$ be continuous. By considering the function g(x) = f(x) xor otherwise show that there exists x_0 with $f(x_0) = x_0$ [1]
 - (b) Let f be as above and satisfying f(f(y)) = f(y) for all y. Let $E_f = \{x : f(x) = x\}$. If E_f has at least two points then show that it must be an interval. [3]
- 9. Let $f: [0,1] \to \mathbb{R}$ be continuous in [0,1] and differentiable in(0,1) such that f(0) = 0and $0 \le f'(x) \le 2f(x)$, for all $x \in (0,1)$. Prove that f(x) = 0 for all $x \in [0,1]$. [Hint: $g(x) = e^{-2x}f(x)$ may be useful.] [3]
- 10. Show that if f is continuous on $[0, \infty)$ and uniformly continuous on $[a, \infty)$ for some positive constant a, then f is uniformly continuous on $[0, \infty)$. [4]
- 11. Let $f : [0,1] \to \mathbb{R}$ be a differentiable function such that there is no $x \in [0,1]$ such that f(x) = f'(x) = 0. Show that the set $Z := \{x \in [0,1] : f(x) = 0\}$ is finite. [3]
- 12. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(r + \frac{1}{n}) = f(r)$ for any rational number r and positive integer n. Prove that f is constant. [Hint: Is $f(r \frac{1}{n}) = f(r)$ also for rational r and n = 1, 2, 3...] [3]